x : input
y : output
y can be predicted from x
model : how we assume the world works
f(x) : expected relationship between x and y
Regression model :
yi = f(xi) + ei
E(ei) = 0
ㄴexpected value
ㄴequally likely that error is positive or negative
ㄴyi is equally likely to be above or below f(xi)
"Essentially all models are wrong, but some are useful."
-George Box, 1987
Task1 - which model f(x)?
Task2 - For a given model f(x), estimate function fhat(x) from data
Flowchart
초록색 ML model=>
The Simple Linear Regression
f(x) = w0+ w1x
yi = f(xi) + ei = w0+w1xi + ei
parameters : regression coefficients (w0, w1)
Fitting a line to data
주황색 Quality metric=>
"Cost" of using a given line
Residual sum of squares (RSS)
x와 y 사이에 예상했던 값과 실제 값의 차이의 제곱의 합
Find "best" line => Minimize cost over all possible w0, w1
The fitted line : use + interpretation
Model vs. fitted line
Interpreting the coefficients
w0 : predicted $ of house with sqft=0 (just land), not very meaningful
w1 : 1 sqft당 변하는 predicted change in the output per unit change in the input
magnitude depends on units of both features and observations
단위 중요!
회색 => ML algorithm
Optimization
RSS가 최소인 w0, w1 찾는 것 => w0hat, w1hat
Concave / Convex functions
* concave : cave(동굴) 같이 생김
concave : a,b 사이에 선을 그으면 모든 점에서 g(w) 아래에 위치한다
convex : line is above g(w) everywhere
neither : below and above
Finding the Max fo Min Analytically
concave에서의 최대값은 derivative=0
convex에서의 최소값은 derivative =0
-> only one place where der=0
neither의 경우는, der=0인 점이 여러개 있다
How do we know whether to move w to right or left? (increase or decrease the value of w?)
concave : Hill climbing
der가 음수면 오른쪽으로, 양수면 왼쪽으로 이동
while not converged,
convex : Hill descent
when der is positive, we want to decrease w and when der is negative, we want to increase w.
Choosing the stepsize
에타(Η, η, eta)
이론적으로 der가 0일 때 optimum인 것은 알지만, 실제로는 어떤 threshold보다 작으면 멈춘다.
der < ε (threshold to be set)
Multiple dimensions
partial derivative is like a derivative with respect to w1, treating all variables as constants
Convex => solution is unique + gradient descent algorithm will converge to minimum
'Data Science > Machine Learning' 카테고리의 다른 글
| 머신러닝 (Machine Learning) (0) | 2023.05.21 |
|---|---|
| [3주차] (0) | 2021.05.27 |
| [2주차] Multiple Regression (0) | 2021.05.27 |
| Scikit-Learn을 이용한 머신러닝 (0) | 2020.10.21 |
| 머신러닝 기본 (0) | 2020.08.04 |