본문 바로가기
Data Science/Machine Learning

[3주차]

by 엔딴 2021. 5. 27.
반응형

오버피팅 (Overfitting)

If there exists a model with estimated parameters w' such that

1) training error (w.hat) < training error (w')

2) true error (w.hat) > true error (w')

trainint set에는 매우 잘 맞는데 don't generalize well

 

Training/Test Split

Training Set / Test Set에 각각 얼마나 분배할 것인가?

1) Training set에 너무 적게 넣는다면 -> W 잘 안 나옴

2) Test set에 너무 적게 넣는다면 -> 일반화 잘 안 됨

 

완벽한 공식은 없다. 

일반화하기 위한 적당한 양의 데이터를 test set에 넣어야 한다. 

이렇게 해서 training에 너무 적은 양이 남는다면, cross validation과 같은 다른 방법도 있다. 

 

 

3 Sources of Error

Noise, Bias, Variance

1. Noise

Data are inherently noisy. 

variance in house price

Irreducible error -> better model을 고른다고 줄일 수 없다

 

 

 

 

우리가 컨트롤 할 수 있는 건 bias, variance

2. Bias

True relation between x and y

difference between average fit and true function.

is our model flexible enough?

 

3. Variance

how different can my specific fits to a given data set be from one another

low complexity -> low variance

how much can the fits vary

erratic predictions

 

high complexity models -> high variance, low bias

 

Bias - Variance Tradeoff

MSE (Mean Squared Error) = Bias^2 + Variance

find the sweet spot

 

Just like with generalization error, we cannot compute bias and variance.

why? 

bias, variance가 true function과의 관계로 정의됨

Size가 n인 모든 가능한 데이터셋을 평균내야 하는데 그게 뭔지 모르기 때문 

 

Error vs. amount of data

for a fixed model complexity

 

 

 

The Regression / ML Work flow

1. Model selection

2. Model assessment

 

Hypothetical implementation

Training set / Test set

1. Model Selection

For each considered model complexity λ : 

1) Estimate parameters W on training data

2) Assess performance of W on test data

3) Choose λ* to be λ with lowest test error

 

2. Model assessment

compute test error of W (fitted model for selected complexity λ*) to approx. generalization error

 

Test set -> Validation set + Test set

반응형

'Data Science > Machine Learning' 카테고리의 다른 글

머신러닝 (Machine Learning)  (0) 2023.05.21
[2주차] Multiple Regression  (0) 2021.05.27
[1주차] Coursera Machine Learning : Regression  (0) 2021.05.27
Scikit-Learn을 이용한 머신러닝  (0) 2020.10.21
머신러닝 기본  (0) 2020.08.04